Abstract
We present a probabilistic complexity analysis of a class of multi-stage algorithms which incrementally refine DFT approximations. Each stage of any algorithm in this class improves the results of the previous stage by a fixed increment in one of three dimensions: SNR, frequency resolution, or frequency coverage. However, the complexity of each stage is probabilistically dependent upon certain characteristics of the input signal. Assuming that an algorithm has to be terminated before its arithmetic cost exceeds a given limit, we have formulated a method for predicting the probability of completion of each of the algorithm's stages. This analysis is useful for low-power and real-time applications where FFT algorithms cannot meet the specified limits on arithmetic cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of VLSI signal processing systems for signal, image and video technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.