Abstract
Departing from the conventional cache hit optimization in cache-enabled wireless networks, we consider an alternative optimization approach for the probabilistic caching placement in stochastic wireless D2D caching networks taking into account the reliability of D2D transmissions. Using tools from stochastic geometry, we provide a closed-form approximation of cache-aided throughput, which measures the density of successfully served requests by local device caches, and we obtain the optimal caching probabilities via numerical optimization. Compared with the cache-hit-optimal case, the optimal caching probabilities obtained by cache-aided throughput optimization show notable gain in terms of the density of successfully served user requests, particularly in dense user environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.