Abstract

Background and objectivesIn computed tomography (CT), statistical iterative reconstruction (SIR) approaches can produce images of higher quality compared to the conventional analytical methods such as filtered backprojection (FBP) algorithm. Effective noise modeling and possibilities to incorporate priors in the image reconstruction problem are the main advantages that lead to continuous development of SIR methods. Oriented by low-dose CT requirements, several methods are recently developed to obtain a high-quality image reconstruction from down-sampled or noisy projection data. In this paper, a new prior information obtained from probabilistic atlas is proposed for low-dose CT image reconstruction. MethodsThe proposed approach consists of two main phases. In learning phase, a dataset of images obtained from different patients is used to construct a 3D atlas with Laplacian mixture model. The expectation maximization (EM) algorithm is used to estimate the mixture parameters. In reconstruction phase, prior information obtained from the probabilistic atlas is used to construct the cost function for image reconstruction. ResultsWe investigate the low-dose imaging by considering the reduction of X-ray beam intensity and by acquiring the projection data through a small number of views or limited view angles. Experimental studies using simulated data and chest screening CT data demonstrate that the probabilistic atlas prior is a practically promising approach for the low-dose CT imaging. ConclusionsThe prior information obtained from probabilistic atlas constructed from earlier scans of different patients is useful in low-dose CT imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.