Abstract

In-line inspection (ILI) of the Trans Alaska Pipeline System (TAPS) using high resolution metal loss tools indicated 77 locations with suspected minor mechanical damage features (MDF). The tools used are able to detect the presence of a suspected feature, and measure indented dimensions, but are insufficient to detect the presence of cracks or gouges needed to reliably assess feature severity based solely on the ILI data. Excavations of 42 sites deemed most severe provided important field data characterizing residual deformation dimensions, the occurrence of gouges or cracks, and allowing a reliable field assessment of defect severity. Upon completion of the excavations, 35 possible MDF locations remained unexcavated. An engineering evaluation was undertaken to assess whether or not these remaining minor MDF pose a threat that is significant enough to warrant excavation. Multiple assessment methods were utilized including deterministic, probabilistic, and risk assessment methods. The probabilistic assessment of 35 unexcavated MDFs was performed using PCFStat; or Pressure Cycle Fatigue Statistical Assessment, which uses Monte Carlo simulation to estimate remaining fatigue life. PCFStat performs 1,000’s of simulations for each case where the input parameters are randomly selected from expected distributions. Of particular importance is the fatigue environment of the location. The results of the probabilistic assessment were used to estimate the potential for failure of remaining MDFs. The results suggest that 25 of 35 unexpected damage features had a POF of less than 10−4 over the remaining expected pipeline life cycle and thus are unlikely to fail. Alyeska considered a combination of probabilistic, deterministic and risk assessment results to decide on the actual locations to be examined. The results of probabilistic analysis also were found to support the outcome of the operator’s risk-based evaluation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.