Abstract

We study risk processes with level dependent premium rate. Assuming that the premium rate converges, as the risk reserve increases, to the critical value in the net-profit condition, we obtain upper and lower bounds for the ruin probability; our proving technique is purely probabilistic and based on the analysis of Markov chains with asymptotically zero drift.We show that such risk processes give rise to heavy-tailed ruin probabilities whatever the distribution of the claim size, even if it is a bounded random variable. So, the risk processes with near critical premium rate provide an important example of a stochastic model where light-tailed input produces heavy-tailed output.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.