Abstract

In the present study, deterministic and probabilistic approaches have been used for the assessment of liquefaction potential of ground during an earthquake. The deterministic approach was used to analyze and assess the liquefaction of loose saturated river bed deposit with emphasis on two benchmark locations. A wide range of earthquake data in the form of peak ground acceleration (PGA) values of 0.18 g, 0.37 g, 0.6 g and 0.75 g was used as input motions. The dynamic properties of soil were evaluated using standard penetration test (SPT) data obtained from the bore logs. The shear stress induced within soil deposit due to the seismic excitation was calculated in the form of cyclic stress ratio (CSR) and cyclic resistance ratio (CRR) in order to calculate the factor of safety (FOS) against liquefaction. In addition, liquefaction potential index (LPI) and probability of liquefaction (PL) were also calculated using input motion. It was observed, based on the probability analysis and liquefaction indices, that the shallow layer soil profile is safe against liquefaction, whereas deep layer soil profile is unsafe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call