Abstract

Engineers are tasked with the challenging task of evaluating the performance and analyzing the risk of systems in the context of performance-based seismic design. All sources of random uncertainty must be taken into account during the design phase in order to complete this assignment. The performance limit states for a structure must be defined using appropriate procedures that take into consideration the system characteristics describing the structure, the soil, and the loads applied to the structural reactions. The main objective of this study is to conduct an in-depth analysis, both linear and non-linear (Pushover), of seismic vulnerability for a reinforced concrete (RC) structure. This aims to probabilistically evaluate the effectiveness of composite materials, particularly those reinforced with glass and carbon fibers, in reducing seismic risk when used to reinforce structural columns. The outcomes of this study will provide valuable insights into the efficacy of FRP reinforcements in enhancing seismic resistance, regardless of the analytical approach adopted (linear or non-linear). They reveal a seismic risk reduction of 48 % for structures equipped with glass fiber-reinforced columns and 67 % for those with carbon fiber-reinforced columns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call