Abstract

This paper investigates the in-depth mechanism of commutation failure for a line-commuted converter-based high-voltage direct current (LCC-HVDC) system. The commutation failure prevention control (CFPREV) and the initial fault voltage angle (IFVA) are considered from the view of the voltage-time area (VTA) in the analysis. It is revealed that the IFVA is among the dominant factors for commutation failures when the voltage drop of the inverter bus is relatively small, and CFPREV further intensifies the impact of the IFVA on commutation failures, while the fluctuation of the direct current plays a dominant role in commutation failures under a greater voltage reduction at the inverter bus. A quantitative division of the severity of AC faults is proposed to determine dominant factors for commutation failures. The relationship between the chance of commutation failures to occur and the IFVA is built, and the method used for computing probability of commutation failures is proposed. The influence of the dynamic of CFPREV output on our research is studied. Simulations based on a typical monopole LCC-HVDC system using PSCAD/EMTDC software are conducted to verify the correctness of the theoretic analysis and the effectiveness of the proposed computing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.