Abstract

Generalized polynomial chaos expansion provides a computationally efficient way of quantifying the influence of stochastic parametric uncertainty on the states and outputs of a system. In this study, a polynomial chaos-based method was proposed for an analysis and design of control systems with parametric uncertainty over a non-hypercube support domain. In the proposed method, the polynomial chaos for the hypercube domain was extended to non-hypercube domains through proper parameterization to transform the non-hypercube domains to hypercube domains. Based on the proposed polynomial chaos framework, a constrained optimization problem minimizing the mean under the maximum allowable variance was formulated for a robust controller design of dynamic systems with the parametric uncertainties of the non-hypercube domain. Several numerical examples ranging from integer to fractional order systems were considered to validate the proposed method. The proposed method provided superior control performance by avoiding the over-bounds from a hypercube assumption in a computationally efficient manner. From the simulation examples, the computation time by gPC analysis was approximately 10–100 times lower than the traditional approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.