Abstract

AbstractMining data with minimal annotation costs requires efficient active approaches, that ideally select the optimal candidate for labelling under a user-specified classification performance measure. Common generic approaches, that are usable with any classifier and any performance measure, are either slow like error reduction, or heuristics like uncertainty sampling. In contrast, our Probabilistic Active Learning (PAL) approach offers versatility, direct optimisation of a performance measure and computational efficiency. Given a labelling candidate from a pool, PAL models both the candidate’s label and the true posterior in its neighbourhood as random variables. By computing the expectation of the gain in classification performance over both random variables, PAL then selects the candidate that in expectation will improve the classification performance the most. Extending our recent poster, we discuss the properties of PAL and perform a thorough experimental evaluation on several synthetic and real-world data sets of different sizes. Results show comparable or better classification performance than error reduction and uncertainty sampling, yet PAL has the same asymptotic time complexity as uncertainty sampling and is faster than error reduction.KeywordsActive LearningError ReductionLabel StatisticUncertainty SamplingProbabilistic GainThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call