Abstract
Performing collaborative semantic mapping is a critical challenge for multi-robot systems to maintain a comprehensive contextual understanding of the surroundings. In this paper, a novel hierarchical semantic map fusion framework is proposed, where the problem is addressed in low-level single robot semantic mapping and high level global semantic map fusion. In the single robot semantic mapping process, Bayesian rule is used for label fusion and occupancy probability updating, where the semantic information is added to the geometric map grid. High level global semantic map fusion covers decentralized map sharing and global semantic map updating. Collaborative semantic mapping is conducted in two scenarios, that is, NTU dataset and the KITTI dataset. The results show the high quality of the global semantic map, which demonstrates the utility and versatility of 3D semantic map fusion algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.