Abstract

This paper presents a probabilistic object recognition and pose estimation method using multiple interpretation generation in cluttered indoor environments. How to handle pose ambiguity and uncertainty is the main challenge in most recognition systems. In order to solve this problem, we approach it in a probabilistic manner. First, given a three-dimensional (3D) polyhedral object model, the parallel and perpendicular line pairs, which are detected from stereo images and 3D point clouds, generate pose hypotheses as multiple interpretations, with ambiguity from partial occlusion and fragmentation of 3D lines especially taken into account. Different from the previous methods, each pose interpretation is represented as a region instead of a point in pose space reflecting the measurement uncertainty. Then, for each pose interpretation, more features around the estimated pose are further utilized as additional evidence for computing the probability using the Bayesian principle in terms of likelihood and unlikelihood. Finally, fusion strategy is applied to the top ranked interpretations with high probabilities, which are further verified and refined to give a more accurate pose estimation in real time. The experimental results show the performance and potential of the proposed approach in real cluttered domestic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.