Abstract

Occurrence of neurofibrillary tangles of the tau protein is a hallmark of tau-related neurodegenerative diseases, i.e. Alzheimer's disease (AD) and frontotemporal dementia. The pathological mechanism underlying AD remains poorly understood, and effective treatments are still unavailable to mitigate the disease. Inhibiting of tau aggregation and disrupting the existing fibrils are key targets in drug discovery towards preventing or curing AD. In this study, grape seed proanthocyanidins (GSPs) was found to effectively inhibit the repeat domain of tau (tau-RD) aggregation and disaggregate tau-RD fibrils in a concentration-dependent manner by inhibiting β-sheet formation of tau-RD. In cells, GSPs relieved cytotoxicity induced by tau-RD aggregates. Molecular dynamics simulations indicated that strong hydrogen bonding, hydrophobic interaction and π-π stacking between GSPs and tau-RD protein were major reasons why GSPs had high inhibitory activity on tau-RD fibrillogenesis. These results provide preliminary data to develop GSPs into medicines, foodstuffs or nutritional supplements for AD patients, suggesting that GSPs could be a candidate molecule in the drug design for AD therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.