Abstract
Data Security is a worldwide concern mostly for small medium enterprise (SMEs) and frameworks, approaches, methods are constantly evolving that has a connection with cloud computing, information systems, artificial intelligence, blockchain. Many developers, administrators or product teams running blind. Those are not knowing of problems with their application or do not have the information to fix the problems. The things which can go wrong with web and mobile applications or services is unlimited like dependency failures, resources, and crashes. Main argument is an evaluation of benefits by using Cloud as infrastructure and application on proactive monitoring called Azure Application Insights (AppInsight) towards target like web application, web API, PKI etc. The findings, demonstration of the study should reveal and support our main hypothesis that there is direct link between the proactive monitoring and the main factors that affects utilizing the cloud services. To address this need, in this paper, we introduce AppInsight, the best practice and a model of proactive approach to monitor different targets using Microsoft technology on Azure Cloud services. AppInsight – a model of proactive monitoring includes several functionalities: (1) identifying availability, (2) failures dependencies, (3) performance and (4) using telemetry data generates ad-hoc solution to fix potential failure of web application, web API etc. AppInsight a feature of Azure Monitor used to monitor live applications. AppInsight will automatically detect performance anomalies, and includes powerful analytics tools to help you diagnose issues. You will get a range of telemetry data of analytics of your target which is monitored by AppInsight. To evaluate this tool, we conduct an empirical evaluation by comparing data from actual live monitoring of Y target. Demo Video: https://www.youtube.com/watch?v=q7R8-c0ge7M
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.