Abstract

Cloud computing systems continue to grow in their scale and complexity. They are changing dynamically as well due to the addition and removal of system components, changing execution environments, frequent updates and upgrades, online repairs and more. In such large-scale complex and dynamic systems, failures are common. In this paper, we present a failure prediction mechanism exploiting both unsupervised and semi-supervised learning techniques for building dependable cloud computing systems. The unsupervised failure detection method uses an ensemble of Bayesian models. It characterizes normal execution states of the system and detects anomalous behaviors. After the anomalies are verified by system administrators, labeled data are available. Then, we apply supervised learning based on decision tree classier to predict future failure occurrences in the cloud. Experimental results in an institute-wide cloud computing system show that our proposed method can forecast failure dynamics with high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.