Abstract
Understanding how children acquire mathematical abilities is fundamental to planning mathematical schooling. This study focuses on the relationships between mathematical cognition, cognition in general and neural foundation in 8 to 9-year-old children. We used additive mathematics tests, cognitive tests determining the tendency for proactive and reactive problem solving and functional near-infrared spectroscopy (fNIRS) for functional brain imaging. The ability to engage in proactive control had a stronger association with mathematical performance than other cognitive abilities, such as processing speed, sustained attention and pattern recognition. The fNIRS method identified differences between proactive and reactive control, i.e., the more proactive the children were, the greater the increase in oxygenated hemoglobin in the left lateral prefrontal cortex during reactive beneficiary situations. During a text-based task involving additive reasoning, increased activity in the dorsal medial prefrontal cortex was detected compared to a similar task with supportive spatial-geometric information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.