Abstract

The distinction between task-switching (T-switch) and response-rule switching (RR-switch) has been reported in previous studies. However, it is unclear whether the neural correlates of proactive and reactive control differ between T-switch and RR-switch. In this study, a modified cue-target task was adopted. When the cue in the current trial differed from that in the preceding trial in shape (or color), the participants had to perform a T-switch (or RR-switch). Otherwise, they performed the same task following the same response rule. The behavioral results showed that the switch cost was greater for the RR-switch than for the T-switch. The event-related potential results indicated that (1) for cues, the switch-positivity in the late positive component (LPC) (500–800 ms) was more enhanced for the RR-switch than for the T-switch over the central to parietal regions, reflecting increased proactive control for the RR-switch compared with the T-switch; (2) for targets, the P3 amplitude was more attenuated in the RR-switch than the T-switch over the central and parietal regions, reflecting increased reactive control for the RR-switch; and (3) under the T-switch, the switch-positivity in the cue-LPC was negatively correlated with accuracy cost, while under the RR-switch, the switch negativity in the target-P3 was positively correlated with the reaction time cost. These findings suggest that similar proactive and reactive control are recruited in the T-switch and RR-switch, whereas cognitive control efforts clearly differ between them, perhaps due to different sub-processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call