Abstract

The primary objectives of this study were to investigate the effects of cobalt(II) chloride (Co, 1.5–25 μ M) on the reactivity of hydrogen peroxide (H2O2, 100 μ M) or oxidants generated by activated human neutrophils. The prooxidative interactions of Co with H2O2 or cells were measured by luminol-enhanced chemiluminescence (LECL), and according to the extent of oxidative inactivation of added alpha-1-proteinase inhibitor (API). Cobalt dramatically potentiated the oxidation of luminol and API by both H2O2 and neutrophils activated with phorbol 12-myristate 13-acetate (5 ng/ml), without affecting the assembly of NADPH oxidase or the magnitude of oxygen consumption by the cells. Using 5,5-dimethyl-pyrolline 1-oxide-based electron spin resonance spectroscopy we were unable to detect hydroxyl radical formation by Co in the presence of either H2O2 or activated neutrophils, while the corresponding LECL responses were unaffected by the hydroxyl radical scavengers benzoate and mannitol (50 mM). These observations indicate that Co potentiates the reactivity of neutrophil-derived oxidants, primarily H2O2, which if operative in vivo during exposure to the heavy metal may pose the risk of oxidant- and protease-mediated tissue injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.