Abstract

Sonodynamic therapy, which utilizes ultrasound (US) to produce cytotoxic reactive oxygen species (ROS), can overcome the critical drawbacks of photodynamic therapy, such as limited tissue penetration depth. However, the development of sonosensitizers having superior sonodynamic effects and desirable biocompatibility remains a major challenge. In this study, nanoscale zirconium-based porphyrinic metal organic frameworks (MOFs) (PCN-222) were developed as safe and effective nanosonosensitizers. Polyethylene glycol (PEG)-coated PCN-222 (PEG-PCN) was loaded with a pro-oxidant drug, piperlongumine (PL), to enable tumor-specific chemo-photodynamic combination therapy. Both PEG-PCN and PL-incorporated PEG-PCN (PL-PEG-PCN) showed high colloidal stability in biological media. In addition, nanoscale PL-PEG-PCN was efficiently internalized by breast cancer cells, leading to substantially increased ROS generation under US exposure. The effective intracellular delivery of PL by PEG-PCN further elevated the level of intracellular ROS in breast cancer cells owing to the pro-oxidative activity of PL. Therefore, PL-PEG-PCN revealed significantly higher sonotoxicity than free PL and PEG-PCN. Owing to the cancer-specific apoptosis triggered by PL, PL-PEG-PCN showed cancer-selective cell death in breast cancer cells compared with normal fibroblast cells. This study demonstrates that pro-oxidant drug-loaded porphyrinic MOFs are biocompatible and effective sonosensitizers for cancer-targeted chemo-sonodynamic combination therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.