Abstract

Multiple myeloma (MM) and its pre-cancerous stage monoclonal gammopathy of undetermined significance (MGUS) allow to study immune responses and the chronology of inflammation in the context of blood malignancies. Both diseases are characterized by the production of a monoclonal immunoglobulin (mc Ig) which for subsets of MGUS and MM patients targets pathogens known to cause latent infection, a major cause of inflammation. Inflammation may influence the structure of both polyclonal (pc) Ig and mc Ig produced by malignant plasma cells via the sialylation of Ig Fc fragment. Here, we characterized the sialylation of purified mc and pc IgGs from 148 MGUS and MM patients, in comparison to pc IgGs from 46 healthy volunteers. The inflammatory state of patients was assessed by the quantification in serum of 40 inflammation-linked cytokines, using Luminex technology. While pc IgGs from MGUS and MM patients showed heterogeneity in sialylation level, mc IgGs from both MGUS and MM patients exhibited a very low level of sialylation. Furthermore, mc IgGs from MM patients were less sialylated than mc IgGs from MGUS patients (p < 0.01), and mc IgGs found to target an infectious pathogen showed a lower level of sialylation than mc IgGs of undetermined specificity (p = 0.048). Regarding inflammation, 14 cytokines were similarly elevated with a p value < 0.0001 in MGUS and in MM compared to healthy controls. MM differed from MGUS by higher levels of HGF, IL-11, RANTES and SDF-1-α (p < 0.05). MGUS and MM patients presenting with hyposialylated pc IgGs had significantly higher levels of HGF, IL-6, tumor necrosis factor-α, TGF-β1, IL-17, and IL-33 compared to patients with hyper-sialylated pc IgGs (p < 0.05). In MGUS and in MM, the degree of sialylation of mc and pc IgGs and the levels of four cytokines important for the anti-microbial response were correlated, either positively (IFN-α2, IL-13) or negatively (IL-17, IL-33). Thus in MGUS as in MM, hyposialylation of mc IgGs is concomitant with increased levels of cytokines that play a major role in inflammation and anti-microbial response, which implies that infection, inflammation, and abnormal immune response contribute to the pathogenesis of MGUS and MM.

Highlights

  • Infectious pathogens are implicated in various B-cell malignancies (Burkitt, Hodgkin, and non-Hodgkin lymphoma, chronic lymphocytic leukemia) via cell infection and direct transformation [Epstein–Barr virus (EBV), hepatitis C virus (HCV)], or via antigen (Ag)-driven stimulation and indirect cell transformation (Helicobacter pylori), or both [1,2,3,4,5]

  • Regarding the links between mc IgG hyposialylation and inflammation in chronic hematological malignancies, our results show that the inflammatory environment in monoclonal gammopathy of undetermined significance (MGUS) and in MM is associated with the production of poorly sialylated mc IgG

  • Our study shows that inflammation occurs early in myeloma pathogenesis since a very similar chronic state of inflammation was observed in MGUS and MM patients vs healthy controls: 35/42 molecules linked to inflammation were increased in MGUS and MM

Read more

Summary

Introduction

Infectious pathogens are implicated in various B-cell malignancies (Burkitt, Hodgkin, and non-Hodgkin lymphoma, chronic lymphocytic leukemia) via cell infection and direct transformation [Epstein–Barr virus (EBV), hepatitis C virus (HCV)], or via antigen (Ag)-driven stimulation and indirect cell transformation (Helicobacter pylori), or both [1,2,3,4,5]. Myeloma is characterized by the accumulation of malignant, clonal, mature plasma cells, which produce a monoclonal immunoglobulin (mc Ig): Ig G, A, or more rarely, M, D, and E. In multiple myeloma (MM), the quantity of mc Ig is ≥30 g/L and, represents the majority of Ig measured in blood serum, typically ≥90% of IgGs; most patients still produce polyclonal (non-malignant) IgGs, at low levels. Clonal plasma cells depend on certain inflammation cytokines for their growth [for instance, interleukin 6 (IL-6)]. Inflammation-linked cytokines produced at high levels by malignant hematopoietic cells in myeloma and in other blood malignancies include hepatocyte growth factor (HGF), IL-11, IL-6, and IL-8 [9]. Clonal myeloma cells secrete factors that inhibit the growth of normal hematopoietic progenitors and suppress the formation of polyclonal Ig [tumor growth factor β1 (TGF-β1) and stroma cell-derived factor 1α (SDF-1α)]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call