Abstract

Samples of peripheral venous blood were collected upon admission and on days 2, 4, and 7 of hospitalization and after 1 year. An extended multiplex analysis was performed in blood serum. Multidetector-computed tomography coronary angiography was performed on day 7 and 1 year after acute myocardial infarction to assess the progression of atherosclerosis. The level of high-sensitive C-reactive protein (hsCRP) was elevated upon admission in MINOCA patients compared to MI-CAD patients (p = 0.05), but it was comparable in two groups at other time points and did not exceed the reference range after 1 year. Despite comparable levels of cytokines CXCL-6, LIGHT, CCL-8, and endocan-1 in patients in both groups, MINOCA patients had a greater increase in pro-inflammatory cytokines PlGF, oncostatin M, IL-20, and CCL-15 sVCAM-1 in the early post-infarction period and in CCL-21, sVCAM-1, oncostatin M, and PlGF after 1 year. We observed significant differences in the dynamics of the following biomarkers between patients with MI-CAD and MINOCA: the dynamics of concentrations of CCL21 (p = 0.002), LIGHT (p = 0.03), and endocan-1 (p = 0.03) after 1 year compared to day 1 in MI-CAD and MINOCA patients was opposite, while the dynamics of CXCL6 (p = 0.04) and endocan-1 (p = 0.02) differed between groups when evaluated after 1 year compared to day 7 of the early post-infarction period. In the MINOCA group, factors associated with atherosclerosis progression were concentrations of sVCAM-1 and CCL-21, while in the MI-CAD group, concentrations of CCL-8 and CXCL6 were the main determinants of atherosclerosis progression. This small study showed that MINOCA and MI-CAD patients exhibited differences in a pro-inflammatory biomarker profile in the early post-infarction period and after 1-year follow-up, which implies distinct inflammatory pathways involved in atherogenesis during MINOCA. The key factors that were associated with atherosclerosis progression in MINOCA patients are sVCAM-1 and CCL-21, which may suggest a complex genesis of atherosclerosis progression due to structurally altered plaques and changes in the microcirculatory bed. In MI-CAD patients, CCL-8 and CXCL-6 were the key biomarkers associated with atherosclerosis progression. Further large-scale studies are required to confirm our data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call