Abstract

Despite the wide usage of β2-adrenoceptor agonists in asthma treatment, they do have side effects such as aggravating inflammation. We previously reported that isoprenaline induced Cl- secretion and IL-6 release via cAMP-dependent pathways in human bronchial epithelia, but the mechanisms underlying the inflammation-aggravation effects of β2-adrenoceptor agonists remain pooly understood. In this study, we investigated formoterol, a more specific β2-adrenoceptor agonist, -mediated signaling pathways involved in the production of IL-6 and IL-8 in 16HBE14o- human bronchial epithelia. The effects of formoterol were detected in the presence of PKA, exchange protein directly activated by cAMP (EPAC), cystic fibrosis transmembrane conductance regulator (CFTR), extracellular signal-regulated protein kinase (ERK)1/2 and Src inhibitors. The involvement of β-arrestin2 was determined using siRNA knockdown. Our results indicate that formoterol can induce IL-6 and IL-8 secretion in concentration-dependent manner. The PKA-specific inhibitor, H89, partially inhibited IL-6 release, but not IL-8. Another intracellular cAMP receptor, EPAC, was not involved in either IL-6 or IL-8 release. PD98059 and U0126, two ERK1/2 inhibitors, blocked IL-8 while attenuated IL-6 secretion induced by formoterol. Furthermore, formoterol-induced IL-6 and IL-8 release was attenuated by Src inhibitors, namely dasatinib and PP1, and CFTRinh172, a CFTR inhibitor. In addition, knockdown of β-arrestin2 by siRNA only suppressed IL-8 release when a high concentration of formoterol (1 μM) was used. Taken together, our results suggest that formoterol stimulates IL-6 and IL-8 release which involves PKA/Src/ERK1/2 and/or β-arrestin2 signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call