Abstract

We investigated the molecular mechanism underlying the processing of pro-B-type natriuretic peptide (proBNP). Rat neonatal atrial and ventricular myocytes were cultured separately. We examined the molecular forms of secreted and intracellular BNP in atrial and ventricular myocytes; levels of corin and furin mRNA in atrial and ventricular myocytes; the effect their knockdown on proBNP processing; plasma molecular forms of BNP from rats and humans with and without heart failure; and the impact of the distance between the glycosylation and cleavage sites in wild-type and mutant human proBNP, expressed in rat myocytes transfected with lentiviral vectors. BNP was the major molecular form secreted by atrial and ventricular myocytes. Transfection of furin siRNA reduced proBNP processing in both atrial and ventricular myocytes; however, transfection of corin siRNA did not reduce it. BNP was the major molecular form in rat plasma, whereas proBNP was the major form in human plasma. The relative fraction of human BNP in rat myocytes expressing human proBNP was about 60%, but increasing the distance between the glycosylation and cleavage sites through mutation, increased the processed fraction correspondingly. These results suggest that proBNP is processed into BNP intracellularly by furin. The level of proBNP processing is lower in humans than rats, most likely due to the smaller distance between the O-glycosylation and cleavage sites in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.