Abstract

Non-modulating hypertension (NMHT) is a high renin subtype of salt sensitive hypertension, which fails to achieve renal vasodilatation and a correct Na(+) handling during sodium load. We investigate, in MHT and NMHT, the role of ANP, the renin-angiotensin system and PgI2, in the renal sodium handling mechanisms. After 10 days of low (20mmol.L) or after 72hs of high (250mmol.L) sodium intake, 13 NMHT (34±5y; 9 male) and 13 MHT (32±4y; 10male) were studied. Pro-ANP (1-30) PgI2, PRA and total exchangeable Na(+)24 (ENa(+)) were measured. Under low sodium intake, PRA (4.2±0.5ng.ml.h; p<0.05) and Pro-ANP (78.6±2pg/ml, p<0.05) were higher than in NMHT under (3.1±0.4ng.ml.h and 69.8±3 pg/ml). After 72h of high Na(+) intake, Pro-ANP (1-30) increased significantly only in MHT (82.1±3pg/ml, p<0.05). PgI2, under low sodium intake (1.83±0.2pg/24h), increased in MHT after 72h under high sodium (2.58±0.5pg/ 24h, p<0.02). Under low sodium diet, PgI2 (2.16±0.11pg/24h) was as higher in NMHT, as in MHT. After 72h under high Na+ intake, it failed to show any change (2.61±0.36 pg/24h; p=ns). A significant correlation between variations in ENa(+) and mean blood pressure (r=0.50, p<0.01), variations in Pro-ANP (1-30) values and ENa(+) in MHT (r=0.95; p<0.001) while a negative correlation between ENa(+) variations and ENa(+) (r=0.81, p<0.05) was observed in NMHT. ENa(+) variations were only significantly related to variations in FF in MHT. Thus, in NMHT, there is an unbalanced relationship between vasonstrictor and vasodilator mediators. From these, as an extrarenal homeostatic mediator, ANP seems to play an important role to compensate the altered renal sodium handling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call