Abstract
The plasticity of solid tumors between the epithelial and mesenchymal states critically influences their malignant progression and metastasis. The epithelial-mesenchymal transition (EMT), which supports cancer cell invasion and metastasis, is promoted by pro-survival members (e.g., Bcl-2 and Bcl-XL) of the Bcl-2 protein family, which are well-known key apoptosis regulators. We found that Bcl-w, another pro-survival member, promotes EMT by increasing respiratory complex-I activity and reactive oxygen species (ROS) levels. In contrast, pro-apoptotic Bax facilitates mesenchymal-epithelial transition by binding to complex-I, which inhibits complex-I-induced ROS production. Functional antagonism between pro-survival and pro-apoptotic proteins in regulating tumor plasticity was directly confirmed by co-expressing Bax with Bcl-w or Bcl-XL. Therefore, the balance between the functionally opposing Bcl-2 proteins appears to be a critical determinant of cancer cell phenotypes. We further showed that sub-lethal doses of γ-radiation induced EMT by increasing Bcl-XL and Bcl-w levels and complex-I activity. We propose that Bcl-2 proteins and complex-I are potential targets for preventing tumor progression and the malignant actions of radiotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.