Abstract

Nanoparticles are efficient drug delivery vehicles for targeting specific organs as well as systemic therapy for a range of diseases, including cancer. However, their interaction with the immune system offers an intriguing challenge. Due to the unique physico-chemical properties, carbon nanotubes (CNTs) are considered as nanocarriers of considerable interest in cancer diagnosis and therapy. CNTs, as a promising nanomaterial, are capable of both detecting as well as delivering drugs or small therapeutic molecules to tumour cells. In this study, we coupled a recombinant fragment of human surfactant protein D (rfhSP-D) with carboxymethyl-cellulose (CMC) CNTs (CMC-CNT, 10–20 nm diameter) for augmenting their apoptotic and immunotherapeutic properties using two leukemic cell lines. The cell viability of AML14.3D10 or K562 cancer cell lines was reduced when cultured with CMC-mwCNT-coupled-rfhSP-D (CNT + rfhSP-D) at 24 h. Increased levels of caspase 3, 7 and cleaved caspase 9 in CNT + rfhSP-D treated AML14.3D10 and K562 cells suggested an involvement of an intrinsic pathway of apoptosis. CNT + rfhSP-D treated leukemic cells also showed higher mRNA expression of p53 and cell cycle inhibitors (p21 and p27). This suggested a likely reduction in cdc2-cyclin B1, causing G2/M cell cycle arrest and p53-dependent apoptosis in AML14.3D10 cells, while p53-independent mechanisms appeared to be in operation in K562 cells. We suggest that CNT + rfhSP-D has therapeutic potential in targeting leukemic cells, irrespective of their p53 status, and thus, it is worth setting up pre-clinical trials in animal models.

Highlights

  • The innate immune system plays a key role in the clearance of pathogens and synthetic compounds including nanoparticles [1,2]

  • This study was aimed at examining the ability of carbon nanotubes (CNTs) + recombinant fragment of human surfactant protein D (rfhSP-D) to induce apoptosis using an eosinophilic cell line, AML14.3D10 [28], and a chronic myelogenous leukemia cell line, K562, to assess if CNT + rfhSP-D nanomaterials are worth testing in animal models

  • The quantitative analysis of viability in treated leukemic cells was carried out using trypan blue (Figure 2) and MTT (Figure 3) assays at 24 h time point

Read more

Summary

Introduction

The innate immune system plays a key role in the clearance of pathogens and synthetic compounds including nanoparticles [1,2]. Human surfactant protein D (SP-D) is a humoral, pathogen pattern recognition molecule, which is found to be associated with pulmonary surfactant, as well as mucosal surfaces outside the lungs [12,13]. SP-D belongs to the collectin family, a collagen containing C-type (calcium-dependent) lectin [14]. The primary structure of SP-D comprises a cross-linking amino-terminal region, a triple-helical collagen region, a coiled-coil neck region, and a C-type lectin domain or carbohydrate recognition domain (CRD) as a trimeric unit [15,16]. SP-D can bind to various carbohydrate and/or charge patterns on the surface of pathogens and become involved in clearing them by recruiting phagocytic cells such as neutrophils and macrophages [15,16]. A truncated form of recombinant human SP-D (rfhSP-D), composed of trimeric neck and

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.