Abstract

Current pro-angiogenic methods in the fields of tissue engineering always aim to enrich the vascular network but neglect to provide an appropriate environment for cells, which may lead to incomplete endothelium or thrombosis. Decellularized matrix gels derived from specific tissue are expected to be suitable for targeted tissue regeneration because they preserve the biochemical properties of the native tissue. Decellularized vascular matrix gel (DVMG) has shown promise for rapid vascularization. However, DVMG is difficult to directly apply due to its weak mechanical properties and rapid degradation. In this work, silk fibroin (SF) was introduced to the DVMG to improve the physical properties of the hybrid scaffolds. The performances of the SF/DVMG scaffolds were characterized, and the results showed that SF effectively improved the overall mechanical properties of the scaffold and decreased the degradation rate. SF/DVMG scaffolds also showed good cell growth promotion effects in vitro. After the scaffolds were subcutaneously implanted in the dorsa of rats, more CD34-positive endothelial cells were expressed in the DVMG-containing scaffolds, and the number of vascular loops significantly increased compared to that of the pure SF scaffold control. The development of DVMG creates more possibilities for the rapid vascular network generation of clinically engineered scaffolds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call