Abstract

A high plasma level of the choline-derived metabolite trimethylamine N-oxide (TMAO) is closely related to the development of cardiovascular disease. However, the underlying mechanism remains unclear. In the present study, we demonstrated that a positive correlation of protein arginine methyltransferase 5 (PRMT5) expression and TMAO-induced vascular inflammation, with upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in primary rat and human vascular smooth muscle cells (VSMC) in vitro. Knockdown of PRMT5 suppressed VCAM-1 expression and the adhesion of primary bone marrow-derived macrophages to TMAO-stimulated VSMC. VSMC-specific PRMT5 knockout inhibited vascular inflammation with decreased expression of VCAM-1 in mice. We further identified that PRMT5 promoted VCAM-1 expression via symmetrical demethylation of Nuclear factor-κB p65 on arginine 30 (R30). Finally, we found that TMAO markedly induced the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) and production of reactive oxygen species, which contributed to PRMT5 expression and subsequent VCAM-1 expression. Collectively, our data provide novel evidence to establish a Nox4-PRMT5-VCAM-1 in mediating TMAO-induced VSMC inflammation. PRMT5 may be a potential target for the treatment of TMAO-induced vascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.