Abstract

Temporomandibular joint osteoarthritis (TMJOA) is a chronic degenerative joint disease characterized by extracellular matrix (ECM) degradation and chondrocyte apoptosis. The aim of this study was to investigate the role of PRMT1 in TMJOA pathogenesis and its underlying molecular mechanism. Compared to the control group, PRMT1 was highly expressed in IL-1β-treated chondrocytes and articular cartilage following MIA injection into rat TMJs. Furthermore, knocking down PRMT1 considerably inhibited ECM degradation and apoptosis induced by IL-1β. Mechanistic analyses further revealed that PRMT1 knockdown activated the PI3K/AKT signaling pathway and prevented FOXO1 from translocating to the nucleus. Moreover, an inhibitor of AKT (LY294002) rescued the effect of PRMT1 knockdown on IL-1β-induced ECM degradation and apoptosis, and AMI-1, a selective inhibitor of PRMT1, inhibited PRMT1 expression and reversed the pathological progress of TMJOA. Thus, our findings suggest that PRMT1 plays an essential role in ECM degradation and chondrocyte apoptosis in TMJOA via the AKT/FOXO1 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.