Abstract

BackgroundPhosphatase of regenerating liver-3 (PRL-3), a protein tyrosine phosphatase, is highly expressed in multiple human cancers and strongly implicated in tumor progression and cancer metastasis. However, the mechanisms by which PRL-3 promotes cancer cell migration, invasion, and metastasis are not very well understood. In this study, we investigated the contribution and molecular mechanisms of PRL-3 in ovarian cancer progression.MethodsPRL-3 protein expression was detected on ovarian cancer tissue microarrays using immunohistochemistry. Stable PRL-3 depleted cell lines were generated using short hairpin RNA (shRNA) constructs. The migration and invasion potential of these cells were analyzed using Transwell and Matrigel assays, respectively. Immunoblotting and immunofluorescence were used to detect protein levels and distribution in PRL-3-ablated cells and the control cells. Cell morphology was observed with hematoxylin-eosin staining and transmission electron microscopy. Finally, PRL-3-ablated and control cells were injected into nude mice for xenograft tumorigenicity assays.ResultsElevated PRL-3 expression was detected in 19% (26 out of 135) of human ovarian cancer patient samples, but not in normal ovary tissues (0 out of 14). Stable depletion of PRL-3 in A2780 ovarian cancer cells resulted in decreased migration ability and invasion activity compared with control parental A2780 cells. In addition, PRL-3-ablated cells also exhibited flattened morphology and extended lamellipodia. To address the possible molecular basis for the altered phenotypes associated with PRL-3 down-regulation, we assessed the expression profiles of various proteins involved in cell-matrix adhesion. Depletion of PRL-3 dramatically enhanced both RNA and protein levels of the cell surface receptor integrin α2, but not its heterologous binding partner integrin β1. Inhibition of PRL-3 also correlated with elevated expression and phosphorylation of paxillin. A pronounced increase in the expression and activation of c-fos, a transcriptional activator of integrin α2, was observed in these PRL-3 knock-down cells. Moreover, forced expression of EGFP-PRL-3 resulted in the suppression of both integrin α2 and c-fos expression in A2780 cells. Significantly, using a xenograft tumor model, we observed a greatly reduced tumorigenicity of A2780 PRL-3 knock-down cells in vivo.ConclusionsThese results suggest that PRL-3 plays a critical role in ovarian cancer tumorigenicity and maintaining the malignant phenotype. PRL-3 may inhibit c-fos transcriptional regulation of integrin α2 signaling. Our results strongly support a role for PRL-3 as a promising therapeutic target and potential early biomarker in ovarian cancer progression.

Highlights

  • Phosphatase of regenerating liver-3 (PRL-3), a protein tyrosine phosphatase, is highly expressed in multiple human cancers and strongly implicated in tumor progression and cancer metastasis

  • Consistent with a role of highlevel expression of phosphatase of regenerating livers (PRLs)-3 in metastasis, we demonstrated that ectopic expression of PRL-3 in Chinese hamster ovary cells enhanced motility, invasive activity and induced metastatic tumor formation in mice [11], suggesting that elevated expression of PRL-3 phosphatase may be a key contributor to the metastasis of the transformed cells

  • PRL-3 is upregulated in human ovarian cancers Up-regulation of PRL-3 is associated with the metastasis of several types of human cancers [8]

Read more

Summary

Introduction

Phosphatase of regenerating liver-3 (PRL-3), a protein tyrosine phosphatase, is highly expressed in multiple human cancers and strongly implicated in tumor progression and cancer metastasis. The mechanisms by which PRL-3 promotes cancer cell migration, invasion, and metastasis are not very well understood. A critical aspect of metastatic behavior involves adhesive interactions of tumor cells with other cells or with the extracellular matrix [2]. One of the most widely observed cell surface changes in cancer cells is in integrin expression. Integrins comprise of a family of heterodimeric cell adhesion receptors which mediate a wide variety of cell-cell and cell-matrix interactions that lead to cell migration, proliferation, differentiation and survival [3,4]. The enhanced metastatic potential of B16a melanoma cells is mediated by increased expression of αIIbβ receptors at the transcriptional level [5]. The α2β1 heterodimer has been shown to negatively regulate metastasis of murine and human cancers [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call