Abstract
AbstractWe consider a ground set E and a submodular function acting on it. We first propose a “set multicovering” problem in which the value (price) of any is . We show that the linear program (LP) of this problem can be directly solved by applying a submodular function minimization (SFM) algorithm on the dual LP. However, the main results of this study concern prize‐collecting multicovering with submodular pricing, that is, a more general and more difficult “multicovering” problem in which elements can be left uncovered by paying a penalty. We formulate it as a large‐scale LP (with variables representing all subsets of E) that could be tackled by column generation (CG; for a CG algorithm for “set‐covering” problems with submodular pricing). However, we do not solve this large‐scale LP by CG, but we solve it in polynomial time by exploiting its integrality properties. More exactly, after appropriate restructuring, the dual LP can be transformed into an LP that has been thoroughly studied (as a primal) in the SFM theory. Solving this LP reduces to optimizing a strong map of submodular functions. For this, we use the Fleischer–Iwata framework that optimizes all these functions within the same asymptotic running time as solving a single SFM, that is, in , where and γ is the complexity of one submodular evaluation. Besides solving the problem, the proposed approach can be useful to (a) simultaneously find the best solution of up to functions under strong map relations in time, (b) perform sensitivity analysis in very short time (even at no extra cost), and (c) reveal combinatorial insight into the primal–dual optimal solutions. We present several potential applications throughout the paper, from production planning to combinatorial auctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Transactions in Operational Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.