Abstract
Abstract Decision trees and random forests are common classifiers with widespread use. In this paper, we develop two protocols for privately evaluating decision trees and random forests. We operate in the standard two-party setting where the server holds a model (either a tree or a forest), and the client holds an input (a feature vector). At the conclusion of the protocol, the client learns only the model’s output on its input and a few generic parameters concerning the model; the server learns nothing. The first protocol we develop provides security against semi-honest adversaries. We then give an extension of the semi-honest protocol that is robust against malicious adversaries. We implement both protocols and show that both variants are able to process trees with several hundred decision nodes in just a few seconds and a modest amount of bandwidth. Compared to previous semi-honest protocols for private decision tree evaluation, we demonstrate a tenfold improvement in computation and bandwidth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.