Abstract
Fully homomophic encryption enables private computation over sensitive data, such as medical data, via potentially quantum-safe primitives. In this extended abstract we provide an overview of an implementation of a private-key fully homomorphic encryption scheme in a protocol for private Naive Bayes classification. This protocol allows a data owner to privately classify her data point without direct access to the learned model. We implement this protocol by performing privacy-preserving classification of breast cancer data as benign or malignant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.