Abstract
Cloudbursts and extreme rainstorms pose a growing threat to urban areas. Accurate rainfall data is essential for predicting inundations and urban flooding. Private weather stations are becoming increasingly common, and their spatial distribution roughly follows population density. This makes them a valuable source of crowdsourced data for high-resolution rainfall fields in urban areas. We evaluated the performance of private rain gauges in two recent pluvial flood events in Oslo. We also explored the potential use of private rain gauge data in inundation models. Our results indicate that private sensors have excellent rain detection capabilities, but they tend to underestimate the reference value on average by approximately 25%. However, bias-corrected crowdsourced rainfall data can produce significantly more accurate inundation maps than those generated from official rain gauges, if compared with maps resulting from bias-corrected weather radar. Overall, our study highlights the potential of utilizing crowdsourced rainfall data from private sensors for accurately representing pluvial flooding in urban areas. These findings have significant implications for improving flood prediction and mitigation strategies in vulnerable urban settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.