Abstract

We study private classical communication over quantum multiple-access channels. For an arbitrary number of transmitters, we derive a regularized expression of the capacity region. In the case of degradable channels, we establish a single-letter expression for the best achievable sum-rate and prove that this quantity also corresponds to the best achievable sum-rate for quantum communication over degradable quantum multiple-access channels. Our achievability result decouples the reliability and privacy constraints, which are handled via distributed source coding with quantum side information at the receiver and distributed hashing, respectively. As a by-product of independent interest, we derive a distributed leftover hash lemma against quantum side information that ensures privacy in our achievability result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.