Abstract

Internet of things (IoT) is the integration of computer-based systems and the physical world in which things interact with each other. Due to heterogeneity and resource-constrained feature of IoT devices, there are many privacy and security challenges resulting in many threat vulnerabilities in IoT environments. After reviewing and analyzing the recent IoT security, privacy, and authentication protocols, we will withdraw research gaps focused on the elimination of human factors in IoT authentication. In order to fill these research gaps, this paper proposes a privacy-preserving machine authenticated key agreement based on IoT, denoted as IoTMAKA. IoTMAKA uses dynamic identity and machine fingerprint to provide security and privacy. Security analysis shows that IoTMAKA provides anonymity and untraceability, provides freshness, and is secure against passive and active attacks. IoTMAKA reduces communication overheads by 20% and computational overheads by 25% on average as compared to the previous related works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.