Abstract
With the proliferation of cloud computing, data owners can outsource the spatial data from the Internet of Things devices to a cloud server to enjoy the pay-as-you-go storage resources and location-based services. However, the outsourced services may raise privacy concerns, since the cloud server may not be fully trusted for both data owners and search users. If the data owners and search users conventionally encrypt the spatial data and query requests, the efficiency and functionality of query processing are weakened. Most of the existing works only focus on spatial data search or keyword search and do not consider spatial keyword search over encrypted data. In this article, we first design a geometric range query (GRQ) scheme, which can generate an arbitrary geometric range to fit the search user’s desired spatial data while protecting location privacy. Furthermore, based on GRQ, we propose a multidimensional spatial keyword similarity search scheme with access control (MSSAC) by integrating the polynomial function and matrix transformation. Specifically, an access control strategy is defined by a role-based polynomial function, which is embedded in the vectors of indices and trapdoors to achieve efficient and lightweight access control. Moreover, MSSAC enables the cloud server to execute compute-then-compare operations for spatial keyword search in a privacy-preserving manner by leveraging techniques of randomizable permutation and matrix multiplication. The formal security analyses and extensive experiments demonstrate that GRQ and MSSAC preserve the privacy of data owners and search users while achieving efficient spatial keyword search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.