Abstract

With an increasingly interconnected and digitized world, distributed signal processing and graph signal processing have been proposed to process its big amount of data. However, privacy has become one of the biggest challenges holding back the widespread adoption of these tools for processing sensitive data. As a step towards a solution, we demonstrate the privacy-preserving capabilities of variants of the so-called distributed graph filters. Such implementations allow each node to compute a desired linear transformation of the networked data while protecting its own private data. In particular, the proposed approach eliminates the risk of possible privacy abuse by ensuring that the private data is only available to its owner. Moreover, it preserves the distributed implementation and keeps the same communication and computational cost as its non-secure counterparts. Furthermore, we show that this computational model is secure under both passive and eavesdropping adversary models. Finally, its performance is demonstrated by numerical tests and it is shown to be a valid and competitive privacy-preserving alternative to traditional distributed optimization techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call