Abstract

Garbled circuits are of central importance in cryptography, finding widespread application in secure computation, zero-knowledge (ZK) protocols, and verifiable outsourcing of computation to name a few. We are interested in a particular kind of garbling scheme, termed privacy-free in the literature. We show that Boolean formulas can be garbled information-theoretically in the privacy-free setting, producing no ciphertexts at all. Existing garbling schemes either rely on cryptographic assumptions (and thus require cryptographic operations to construct and evaluate garbled circuits), produce garbled circuits of non-zero size, or are restricted to low depth formulaic circuits. Our result has both theoretical and practical implications for garbled circuits as a primitive. On the theory front, our result breaks the known theoretical lower bound of one ciphertext for garbling an AND gate in this setting. As an interesting implication of producing size zero garbled circuits, our scheme scores adaptive security for free. On the practical side, our garbling scheme involves only cheap XOR operations and produces size zero garbled circuits. As a side result, we propose several interesting extensions of our scheme. Namely, we show how to garble threshold and high fan-in gates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.