Abstract

Demand response modeling in smart grids plays a significant role in analyzing and shaping the load profiles of consumers. This approach is used in order to increase the efficiency of the system and improve the performance of energy management. The use of demand response analysis in determining the load profile enhances the scheduling approach to the user profiles in the residential sector. In accordance with the behavioral pattern of the user’s profile, incentive-based demand response programs can be initiated in the residential sector. In modeling the behavioral pattern of the user’s profile, the machine learning approach is used to analyze the profile patterns. The incentive-based demand response is demonstrated in order to show the importance of maintaining the privacy of residential users, during interactions between demand- and load-profile patterns. In this work, real-time demand response modeling for residential consumers, with incentive schemes, are analyzed. The incentive schemes are proposed in order to show how the privacy of the residential units may be considered, as a result the model is developed with a two-step analysis approach. In the first step, the demand response modeling is performed with the scheduling of appliances on the residential side, by forming hubs in a cloud–fog-based smart grid environment. This process, with an incentive demand response scheme and scheduling of appliances, is performed using an optimal demand response strategy that uses a discounted stochastic game. In the second step, the privacy concerns of the demand response model from the strategy analysis are addressed using a generative adversarial network (GAN) Q-learning model and a cloud computing environment. In this work, the DR strategy model with privacy concerns for residential consumers, along with EV management, is performed in a two-step process and arrives at an optimal strategy. The efficiency and real time analysis proposed in this model are validated with real-time data analysis in simulation studies and with mathematical analysis of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.