Abstract

AbstractRecently, face recognition based on homomorphic encryption for privacy preservation has garnered significant attention. However, there are two major challenges with homomorphic encryption methods: the security and efficiency of face recognition systems. We present a more efficient and secure PUM (Privacy preserving security Using Multi‐key homomorphic encryption) mechanism for facial recognition. By integrating feature grouping with parallel computing, we enhance the efficiency of homomorphic operations. The use of multi‐key encryption ensures the security of the facial recognition system. This approach improves the security and speed of facial recognition systems in cloud computing scenarios, increasing the original 128‐bit security to a maximum of 1664‐bit security. In terms of efficiency, comparing encrypted images takes only 0.302 s, with an accuracy rate of 99.425%. When applied to a campus scenario, the average search time for a facial template library containing 700 encrypted features is approximately 1.5 s. Consequently, our solution not only ensures user privacy but also demonstrates superior operational efficiency and practical value. In comparison to recently emerged ciphertext facial recognition systems, our solution has demonstrated notable enhancements in both security and time efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.