Abstract
Support vector machine (SVM) is an important technique for data classification. Traditional SVM assumes free access to data. If the data are split and held by different users, for privacy reasons, users are likely unwilling to submit their data to a third party for classification. In this paper, by using additive homomorphic encryption and random transformations (matrix transformation and vector decomposition), we design a privacy-preserving outsourcing scheme for conducting Least Squares SVM (LS-SVM) classification on vertically partitioned data. In our system, multiple data owners (users) submit their encrypted data to two non-colluding service providers, which conduct SVM algorithm on it. During the execution of our algorithm, neither service provider learns anything about the input data, the intermediate results, or the predicted result. In other words, our algorithm is encrypted in the whole process. Extensive theoretical analysis and experimental evaluation demonstrate the correctness, security, and efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.