Abstract

Proactive edge association is capable of improving wireless connectivity at the cost of increased handover (HO) frequency and energy consumption, while relying on a large amount of private information sharing required for decision making. In order to improve the connectivity-cost trade-off without privacy leakage, we investigate the privacy-preserving joint edge association and power allocation (JEAPA) problem in the face of the environmental uncertainty and the infeasibility of individual learning. Upon modelling the problem by a decentralized partially observable Markov Decision Process (Dec-POMDP), it is solved by federated multi-agent reinforcement learning (FMARL) through only sharing encrypted training data for federatively learning the policy sought. Our simulation results show that the proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.