Abstract

Latest developments in computing and communication technologies are enabled the design of connected healthcare system which are mainly based on IoT and Edge technologies. Blockchain, data encryption, and deep learning (DL) models can be utilized to design efficient security solutions for IoT healthcare applications. In this aspect, this article introduces a Blockchain with privacy preserving image encryption and optimal deep learning (BPPIE-ODL) technique for IoT healthcare applications. The proposed BPPIE-ODL technique intends to securely transmit the encrypted medical images captured by IoT devices and performs classification process at the cloud server. The proposed BPPIE-ODL technique encompasses the design of dragonfly algorithm (DFA) with signcryption technique to encrypt the medical images captured by the IoT devices. Besides, blockchain (BC) can be utilized as a distributed data saving approach for generating a ledger, which permits access to the users and prevents third party’s access to encrypted data. In addition, the classification process includes SqueezeNet based feature extraction, softmax classifier (SMC), and Nadam based hyperparameter optimizer. The usage of Nadam model helps to optimally regulate the hyperparameters of the SqueezeNet architecture. For examining the enhanced encryption as well as classification performance of the BPPIE-ODL technique, a comprehensive experimental analysis is carried out. The simulation outcomes demonstrate the significant performance of the BPPIE-ODL technique on the other techniques with increased precision and accuracy of 0.9551 and 0.9813 respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.