Abstract

Background Central collection of distributed medical patient data is problematic due to strict privacy regulations. Especially in clinical environments, such as clinical time-to-event studies, large sample sizes are critical but usually not available at a single institution. It has been shown recently that federated learning, combined with privacy-enhancing technologies, is an excellent and privacy-preserving alternative to data sharing. Objective This study aims to develop and validate a privacy-preserving, federated survival support vector machine (SVM) and make it accessible for researchers to perform cross-institutional time-to-event analyses. Methods We extended the survival SVM algorithm to be applicable in federated environments. We further implemented it as a FeatureCloud app, enabling it to run in the federated infrastructure provided by the FeatureCloud platform. Finally, we evaluated our algorithm on 3 benchmark data sets, a large sample size synthetic data set, and a real-world microbiome data set and compared the results to the corresponding central method. Results Our federated survival SVM produces highly similar results to the centralized model on all data sets. The maximal difference between the model weights of the central model and the federated model was only 0.001, and the mean difference over all data sets was 0.0002. We further show that by including more data in the analysis through federated learning, predictions are more accurate even in the presence of site-dependent batch effects. Conclusions The federated survival SVM extends the palette of federated time-to-event analysis methods by a robust machine learning approach. To our knowledge, the implemented FeatureCloud app is the first publicly available implementation of a federated survival SVM, is freely accessible for all kinds of researchers, and can be directly used within the FeatureCloud platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.