Abstract

We investigate privacy-preserving, video-based action recognition in deep learning, a problem with growing importance in smart camera applications. A novel adversarial training framework is formulated to learn an anonymization transform for input videos such that the trade-off between target utility task performance and the associated privacy budgets is explicitly optimized on the anonymized videos. Notably, the privacy budget, often defined and measured in task-driven contexts, cannot be reliably indicated using any single model performance because strong protection of privacy should sustain against any malicious model that tries to steal private information. To tackle this problem, we propose two new optimization strategies of model restarting and model ensemble to achieve stronger universal privacy protection against any attacker models. Extensive experiments have been carried out and analyzed. On the other hand, given few public datasets available with both utility and privacy labels, the data-driven (supervised) learning cannot exert its full power on this task. We first discuss an innovative heuristic of cross-dataset training and evaluation, enabling the use of multiple single-task datasets (one with target task labels and the other with privacy labels) in our problem. To further address this dataset challenge, we have constructed a new dataset, termed PA-HMDB51, with both target task labels (action) and selected privacy attributes (skin color, face, gender, nudity, and relationship) annotated on a per-frame basis. This first-of-its-kind video dataset and evaluation protocol can greatly facilitate visual privacy research and open up other opportunities. Our codes, models, and the PA-HMDB51 dataset are available at: https://github.com/VITA-Group/PA-HMDB51.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.