Abstract
Privacy-preserving data splitting is a technique that aims to protect data privacy by storing different fragments of data in different locations. In this work we give a new combinatorial formulation to the data splitting problem. We see the data splitting problem as a purely combinatorial problem, in which we have to split data attributes into different fragments in a way that satisfies certain combinatorial properties derived from processing and privacy constraints. Using this formulation, we develop new combinatorial and algebraic techniques to obtain solutions to the data splitting problem. We present an algebraic method which builds an optimal data splitting solution by using Gröbner bases. Since this method is not efficient in general, we also develop a greedy algorithm for finding solutions that are not necessarily minimally sized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.