Abstract
During the whole process of data mining (from data collection to knowledge discovery) various sensitive data get exposed to several parties including data collectors, cleaners, preprocessors, miners and decision makers. The exposure of sensitive data can potentially lead to breach of individual privacy. Therefore, many privacy preserving techniques have been proposed recently. In this paper we present a framework that uses a few novel noise addition techniques for protecting individual privacy while maintaining a high data quality. We add noise to all attributes, both numerical and categorical. We present a novel technique for clustering categorical values and use it for noise addition purpose. A security analysis is also presented for measuring the security level of a data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.