Abstract

Crowdsensing platforms collect, process, transmit, and analyze spectrum data worldwide to optimize radio frequency spectrum usage. However, Internet-of-Things (IoT) spectrum sensors, performing some of the previous tasks, are exposed to software manipulation aiming to execute spectrum sensing data falsification (SSDF) attacks to compromise data integrity and spectrum optimization. Novel intrusion detection systems (IDSs) combining device fingerprinting with Machine and Deep Learning (ML/DL) improve the limitation of traditional solutions and remove the necessity of redundant sensors and reputation mechanisms. However, they fail when detecting SSDF attacks accurately while protecting sensors privacy. This work proposes a novel host-based and federated learning-oriented IDS for IoT spectrum sensors that considers unsupervised ML/DL and fingerprints based on system calls. The framework detection performance and consumption of resources are analyzed in local and federated scenarios with six spectrum sensors deployed on Raspberry Pis. The obtained results significantly improve related work when detecting SSDF attacks while protecting sensors privacy, and consuming CPU, memory, and storage of sensors in a reduced manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.