Abstract

This article investigates the differential privacy of the initial state for nabla discrete fractional-order dynamic systems. A novel differentially private Gaussian mechanism is developed which enhances the system’s security by injecting random noise into the output state. Since the existence of random noise gives rise to the difficulty of analyzing the nabla discrete fractional-order systems, to cope with this challenge, the observability of nabla discrete fractional-order systems is introduced, establishing a connection between observability and differential privacy of initial values. Based on it, the noise magnitude required for ensuring differential privacy is determined by utilizing the observability Gramian matrix of systems. Furthermore, an optimal Gaussian noise distribution that maximizes algorithmic performance while simultaneously ensuring differential privacy is formulated. Finally, a numerical simulation is provided to validate the effectiveness of the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.